

La biodiversité fonctionnelle au service de la production

o Deux problématiques majeures en cultures légumières

- Mouches du genre *Delia (D. radicum* et *D. platura) ®* Brassicacées
- Mouche de la carotte *Psila rosae* ☞ Apiacées

Nouveaux enjeux environnementaux

- Plan Ecophyto 2018 (réduction usage pesticides de 50%)
- Directive 91/414 (révision substances actives) remplacé par le nouveau règlement 1107/2009
- Protection chimique difficile (retraits substances actives)
- Techniques alternatives-prophylaxie : efficacité partielle

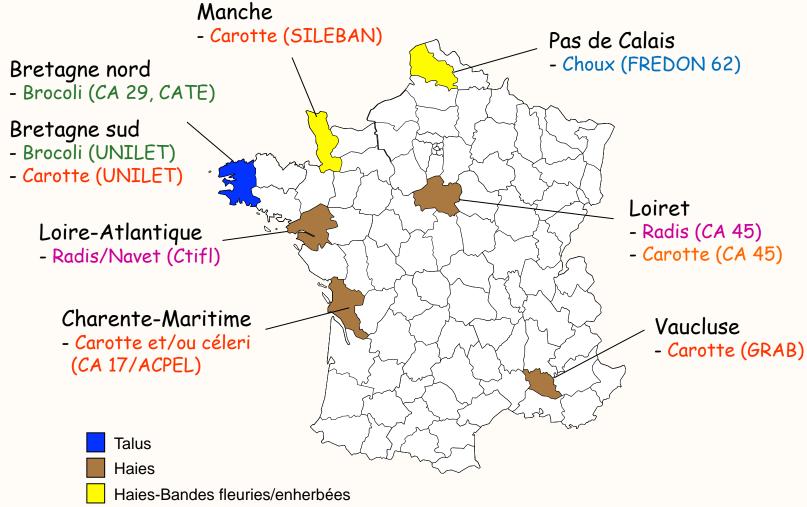
Contrôle biologique par conservation des habitats

- Attirer/maintenir/amplifier populations d'ennemis naturels *via* manipulation de l'habitat.
- Conservation/implantation de milieux semi-naturels en bordure de culture (« réservoirs »)
- → faible pression parasitaire = meilleurs efficacité moyens de protection ?

○ Le projet BIODIVLEG (2009-2011) soutenu par le Casdar et labellisé Picleg

- Ctifl, INRA, Université Rennes I, UNILET, GRAB, SILEBAN, ACPEL, CATE, CA 17, CA 29, CA 45
- Caractérisation prédateurs et/ou parasitoïdes des mouches du genre *Delia* (brassicacées) et de la mouche de la carotte (apiacées) et analyse des interactions
- Influence des abords de parcelle sur les processus de régulation naturelle

Le projet BIODIVLEG



Le projet BIODIVLEG

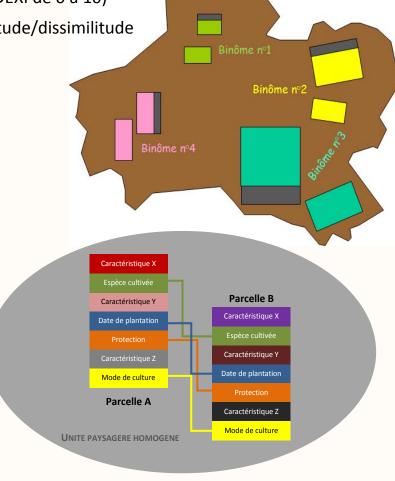
o Réseau de parcelles appariées deux à deux

Caractérisation biophysique (localisation géographique, type de sol, surface, climat...)

 Caractérisation technique (espèce cultivée, date semis/plantation, moyens de protection contre les ravageurs, type de fertilisation, précédent cultural...)

Caractérisation des abords parcellaires (note DEXI de 0 à 10)

Appariement deux à deux selon critères similitude/dissimilitude


√ 80 paires de parcelles apiacées

√ 164 paires de parcelles brassicacées

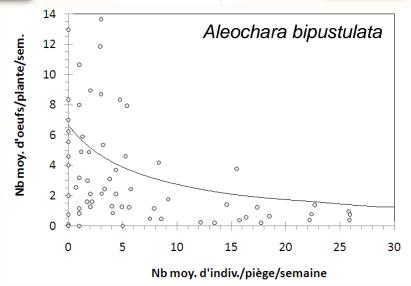
Mesures et observations

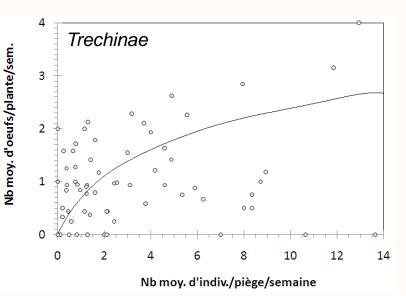
- Pontes de mouches
- Infestation des cultures + parasitisme
- Densité d'activité ennemis naturels
 - Staphylins, carabidés, araignées
- Incidence dégâts à la récolte
- Analyses des corrélations (Pearson)
- Comparaisons statistiques
 - > Test de Wilcoxon pour deux échant. app.

Résultats Mouches du genre Delia

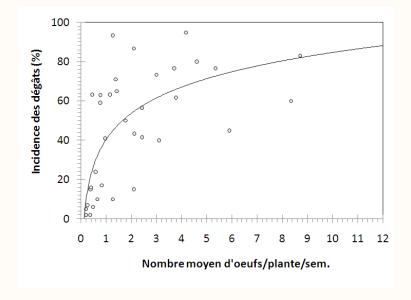
Interactions Mouches-Ennemis naturels

Test de corrélation de Pearson


Prédateurs et/ou parasitoïdes	Œufs	Larves/pupes		
Aleochara bilineata	- 0,19 (NS)	+ 0,52 (**)		
Aleochara bipustulata	- 0,31 (**)	+ 0,51 (**)		
Autres staphylins	- 0,08 (NS)	+ 0,23 (NS)		
Harpalinae	+ 0,30 (*)	- 0,08 (NS)		
Pterostichinae	+ 0,14 (NS)	+ 0,31 (*)		
Trechinae	+ 0,68 (**)	- 0,17 (NS)		
Araignées	- 0,32 (**)	+ 0,11 (NS)		


Espèce	Pr O	Pa L/P	Pr L/P
Harpalinae	Χ		
Trechinae	Χ		
Araignées	Χ		
A. bipustulata	Χ	Χ	Χ
A. bilineata		Χ	Χ
Pterostichinae			Χ
Autres staphylins			

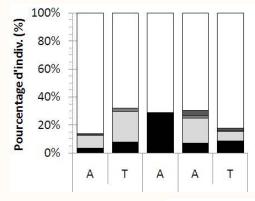
Pr = prédateur ; Pa = parasitoïde O = œufs ; L = larves ; P = pupes


Interactions Mouches-Ennemis naturels

Prédateurs œufs

➤ Intérêt direct pour la production : Corrélation significative œufs/dégâts Test de corrélation de Pearson (P<0,05)

Prédateurs et/ou parasitoïdes de larves et/ou pupes

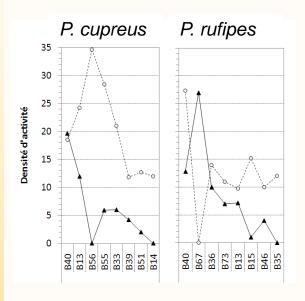

➤ Intérêt indirect (long terme) pour la production :

Action postérieure à la réalisation des dégâts...

... Mais > potentiel d'infestation d'une année/l'autre

Taux de parasitismes moyens

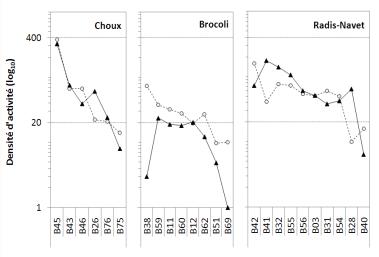
- Loire-Atlantique (navet): 25±8% (A. bipustulata)
- Finist. Sud, Morb. (brocoli): 10±2% (*Trybliographa rapae*)
- Finistère nord (brocoli): 14±1% (*T. rapae, A. bipustulata*)
- Pas-de-Calais (choux): 8±2% (A. bilineata)



Parasitisme Loire-Atlantique (navet)

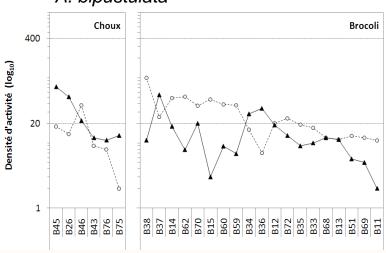
- □ Mouches
- T. rapae ■ Ichneumonidae
- A. bilineata
- \square A. bipustulata

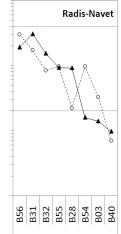
Effet des abords de parcelle Carabidés, Staphylins, Araignées


Ratio D_{forte}/D_{faible} (% cas)

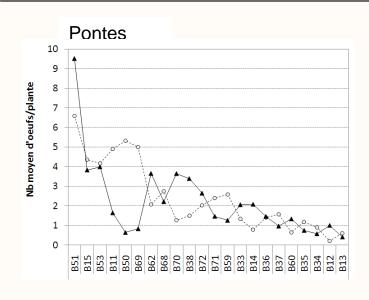
P. cupreus: 4,4±0,7 (89%) *
P. rufipes: 5,5±0,2,6 (78%) *
A. bilineata: 1,7±0,1 (88%) *
A. bipustulata: 3,4±0,9 (68%) *

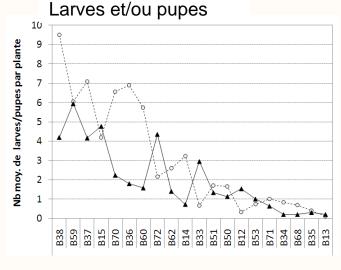
P. melanarius: 2,6±1,1 (48%) NS Trechinae: 2,9±1,0 (66%) NS Araignées: 1,0±0,1 (43%) NS


Test Wilcoxon pour 2 échant. app. (P<0,05)


A. bilineata

A. bipustulata



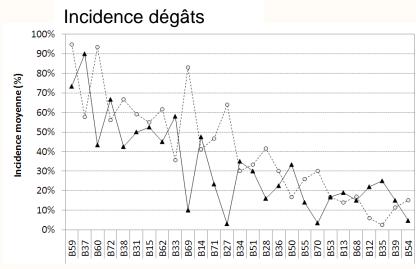


Brocoli uniquement

Effet des abords de parcelle Mouches du genre *Delia*

Ratio D_{forte}/D_{faible} (% cas)

Pontes: $1,6\pm0,4$ ($2,8\pm0,9$) (50%) NS


Larves/pupes: 1,9±0,3 (2,3±0,4) (55%) NS

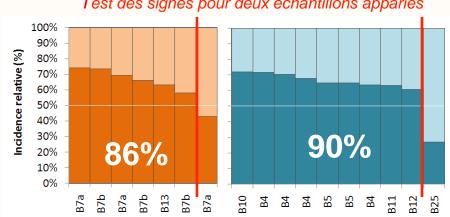
Dégâts: 2,5±0,8 (2,7±1,1) (45%) NS

Pression parasitaire forte:

- > 5 œufs/plante pour un couple de parcelle
- > 2 larves-pupes/plante pour un couple de parcelle
- > 20% plantes mouchées pour un couple de parcelle

Test Wilcoxon pour 2 échant. app. (P<0,05)

Résultats Mouches de la carotte

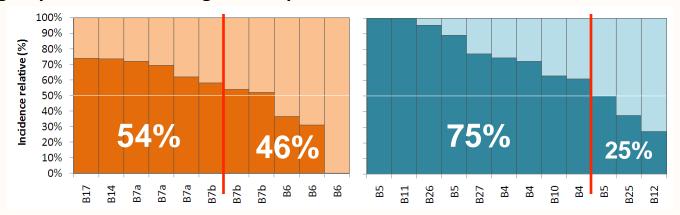


Pontes et dégâts Psila rosae

Pontes parcelles « Aménagées » vs parcelles « Témoins »

Ratio moven carotte = 2.0 ± 0.3 *

Test des signes pour deux échantillons appariés



Ratio moyen céleri = 1,9 ± 0,2 *

Test des signes pour deux échantillons appariés,

o Dégâts parcelles « Aménagées » vs parcelles « Témoins »

Ratio moyen = 1.5 ± 0.3 *

Test des signes pour deux échantillons appariés

Ratio moyen = 4.2 ± 1.3 *

Test des signes pour deux échantillons appariés

Rencontre Technique « Agriculture Biologique», 27 septembre 2012

Conclusion

Mouches du genre Delia en cultures de brassicacées

Des prédateurs d'œufs à favoriser (intérêt direct)

A. bipustulata, Trechinae (Bembidion sp.), Harpalinae (P. rufipes), Araignées.

Des prédateurs et/ou parasitoïdes à préserver (intérêt indirect)

* A. bipustulata, A. Bilineata, Pterostichinae (P. melanarius, P. cupreus).

Action réelle mais insuffisante dans les conditions de l'étude (cultures conventionnelles)

- Activité des prédateurs/parasitoïdes pas corrélée avec dégâts à la récolte...
 - → Action insuffisante : équilibre critique pontes/activité ennemis naturels ?
- Présence de milieux semi-naturels au bord des parcelles = effet positif sur l'activité de certaine espèces de prédateurs/parasitoïdes (*P. cupreus*, *P. rufipes* et en moindre mesure *Aleochara sp*) sans favoriser les mouches du *Delia*, mais pas d'effet significatif sur l'intensité de la régulation naturelle et le rendement commercial...
- « Réservoirs » d'ennemis naturels + pratiques culturales particulières ?
 - → Produits phytosanitaires sélectifs de la faune auxiliaire
 - → Diffusion molécules attirant prédateurs/parasitoïdes (écologie chimique)
 - → Lâchers artificiels d'auxiliaires supplémentaires
 - → Travail du sol adapté
 - → Cultures associées
 - →...

Conclusion

Mouches de la carotte en cultures d'apiacées

Pas de données sur les corrélations mouches-prédateurs/parasitoïdes « Action des prédateurs/parasitoïdes ciblés ?...

Régulation naturelle insuffisante dans les conditions de l'étude (cultures conventionnelles)

- Pas de prédateurs ni de parasitoïdes pour la mouche de la carotte ?...
- Fquilibre critique pontes/activité ennemis naturels?...
- Fifectifs insuffisants (traitements phytosanitaires)?...
- Présence de milieux semi-naturels au bord des parcelles = favorise certaine espèces de prédateurs/parasitoïdes (*P. cupreus*, *P. rufipes* et en moindre mesure *Aleochara sp*) mais favorise de façon beaucoup plus significative les populations de mouches!
- Besoin de travaux approfondis ?
 - → Test de comportements alimentaire en laboratoire
 - → Recherche de parasitoïdes en conditions réelles de production
 - → Evaluation prédation au champ à l'aide de méthodologies innovantes (biologie moléculaire...)
- Ou bien tout simplement ne pas faire de carottes à proximité de haies !...

Contact: picault@ctifl.fr

Les partenaires du projet Biodivleg remercient chaleureusement tous les producteurs ayant participé aux travaux pour leur implication et leur motivation.